Applied R Code
Data Science for Immediate Application
Skip to content
  • Home
  • About
  • Intro to R
    • What is R?
    • R Basics
    • R Data Import
  • R Data Syntax
    • Data Modes and Classes in R
    • Data Object Management
    • Data Formatting in R
    • R Dates and Times
    • Data Subscripting in R
    • Data Infix Operators in R
    • Data Expressions in R
    • Data Concatenation and Coercion in R
    • Data Sequences and Repetition in R
    • Data Sorting in R
    • Data Distributions in R
    • Regular Expressions (RegEx) in R
  • R Data Objects
    • R Vectors
    • R Matrices
    • R Arrays
    • R Lists
    • Factors in R
    • Data Frames in R
  • R Programing
    • Creating R Functions
    • Local vs Global Objects
    • Conditionals in R
    • Iteration in R
    • Special Functions in R
    • Debugging in R
  • R Graphics
    • Base Graphics
      • R Graphics: Structure of R Graphs
      • R Graphics: High Level Commands
      • R Graphics Gallery
      • R Graphics: Plot Parameters
      • R Graphics: Multi-Graph Layouts
      • Trellis Graphs in R
    • ggplot2
      • The Grammar of Graphics
      • Layered Plots (ggplot)
      • Scatter Plots (ggplot)
      • Bar Graphs (ggplot)
      • Line Graphs (ggplot)
      • Boxplots (ggplot)
      • Error Bars (ggplot)
      • Facetting (ggplot)
      • Titles (ggplot)
      • Axes (ggplot)
      • Legends (ggplot)
      • Other Geoms (ggplot)
      • Multiple Plots (ggplot)
      • Themes (ggplot)
    • Color Palettes in R
      • R Color Basics
      • R Graphics: Grey Scales
      • R Graphics: Heat Colors
      • R Graphics: Color Ramp Functions
      • Colors in ggplot
      • RColorBrewer Palettes
      • R Color Tables: Download
  • R Work Flow
    • Project Template
    • Principles of Tidy Data
    • Tidy Data Preparation
    • Tidy Data Transformations
    • Split-Apply-Combine Techniques
    • Project Reporting with RMarkdown
    • Project Control with Git and GitHub
  • Data Modeling in R
  • Spatial Analysis
  • R Packages
  • Web Scraping in R
  • CalcStudio
    • Energy Conversions
    • Math Reference
    • Applied Statistics
    • Machine Learning
    • Operations Research
  • LaTeX
    • LaTeX Basics
    • Latex Documents
    • Latex Page Format
    • Latex Line and Page Breaks
    • Latex Font Styles
    • Latex Paragraph Formats
    • Latex List Structures
    • Latex Math Basics
  • Linux
    • Linux Intro
    • Linux Help
    • Linux Aliases
    • Linux APT
    • Linux OS Basics
    • Linux Hotkeys (Ubuntu)
    • Linux File Management
    • Linux Utilities
  • Git and GitHub
  • Links

R Graphics (ggplot2)

The flexibility of R graphics using the package ggplot is illustrated through a series of structured examples.  

The Grammar of Graphics
Building Layered Plots
Scatter Plots (ggplot)
Bar Graphs (ggplot)
Line Graphs (ggplot)
Boxplots (ggplot)
Error Bars (ggplot)
Facetting (ggplot)
Titles (ggplot)
Axes (ggplot)
Legends (ggplot)
Other Geoms (ggplot)
Multiple Plots (ggplot)
Themes (ggplot)

Back | Next

  • Login

    • Lost Password
  • Today in Energy

  • Archives

  • R-Bloggers

    What is a Good Test Set Size?
    What is a Good Test Set Size?
    Plot predicted values for presences vs. absences
    Plot predicted values for presences vs. absences
    The Mendoza line
    The Mendoza line
    RObservations #8- #TidyTuesday- Analyzing the Art Collections Dataset
    RObservations #8- #TidyTuesday- Analyzing the Art Collections Dataset
    rstudio::global(2021) Starts Tomorrow!
    rstudio::global(2021) Starts Tomorrow!
Applied R Code
Proudly powered by WordPress.