Applied R Code
Data Science for Immediate Application
Skip to content
  • Home
  • About
  • Intro to R
    • What is R?
    • R Basics
    • R Data Import
  • R Data Syntax
    • Data Modes and Classes in R
    • Data Object Management
    • Data Formatting in R
    • R Dates and Times
    • Data Subscripting in R
    • Data Infix Operators in R
    • Data Expressions in R
    • Data Concatenation and Coercion in R
    • Data Sequences and Repetition in R
    • Data Sorting in R
    • Data Distributions in R
    • Regular Expressions (RegEx) in R
  • R Data Objects
    • R Vectors
    • R Matrices
    • R Arrays
    • R Lists
    • Factors in R
    • Data Frames in R
  • R Programing
    • Creating R Functions
    • Local vs Global Objects
    • Conditionals in R
    • Iteration in R
    • Special Functions in R
    • Debugging in R
  • R Graphics
    • Base Graphics
      • R Graphics: Structure of R Graphs
      • R Graphics: High Level Commands
      • R Graphics Gallery
      • R Graphics: Plot Parameters
      • R Graphics: Multi-Graph Layouts
      • Trellis Graphs in R
    • ggplot2
      • The Grammar of Graphics
      • Layered Plots (ggplot)
      • Scatter Plots (ggplot)
      • Bar Graphs (ggplot)
      • Line Graphs (ggplot)
      • Boxplots (ggplot)
      • Error Bars (ggplot)
      • Facetting (ggplot)
      • Titles (ggplot)
      • Axes (ggplot)
      • Legends (ggplot)
      • Other Geoms (ggplot)
      • Multiple Plots (ggplot)
      • Themes (ggplot)
    • Color Palettes in R
      • R Color Basics
      • R Graphics: Grey Scales
      • R Graphics: Heat Colors
      • R Graphics: Color Ramp Functions
      • Colors in ggplot
      • RColorBrewer Palettes
      • R Color Tables: Download
  • R Work Flow
    • Project Template
    • Principles of Tidy Data
    • Tidy Data Preparation
    • Tidy Data Transformations
    • Split-Apply-Combine Techniques
    • Project Reporting with RMarkdown
    • Project Control with Git and GitHub
  • Data Modeling in R
  • Spatial Analysis
  • R Packages
  • Web Scraping in R
  • CalcStudio
    • Energy Conversions
    • Math Reference
    • Applied Statistics
    • Machine Learning
    • Operations Research
  • LaTeX
    • LaTeX Basics
    • Latex Documents
    • Latex Page Format
    • Latex Line and Page Breaks
    • Latex Font Styles
    • Latex Paragraph Formats
    • Latex List Structures
    • Latex Math Basics
  • Linux
    • Linux Intro
    • Linux Help
    • Linux Aliases
    • Linux APT
    • Linux OS Basics
    • Linux Hotkeys (Ubuntu)
    • Linux File Management
    • Linux Utilities
  • Git and GitHub
  • Links

R-Programming

Welcome to R-Programming!  Here you will find a knowledge base of things you need to know about R.  Find the topic you are interested in below.

Intro to R
R Basics
R Data Import
R Data Syntax
Data Objects
—-Vectors
—–Matrices
—–Arrays
—–Lists
—–Factors
      Data Frames
R Programming
—-Creating R Functions
—- Local vs. Global Objects
—–Conditionals
—–Iteration
—–Special Functions
—–Debugging

R Graphics
     Structure and Devices
     High-Level Commands
     Example Plots
     Graphics Parameters
     Multi-graph Layouts
     Trellis Charts
ggplot
     The Grammar of Graphics
     Building Layered Plots
     Scatter Plots (ggplot)
     Bar Graphs (ggplot)
     Line Graphs (ggplot)
     Boxplots (ggplot)
     Error Bars (ggplot)
     Facetting (ggplot)

     Titles (ggplot)
     Axes (ggplot)
     Other Geoms (ggplot)
     Multiple Plots (ggplot)
R Colors

     R Color Basics
     Grey Scales
     Heat Colors
     Color Ramp Functions
     ggplot Colors
     RColorBrewer Palettes
     Color Tables
Data Modeling
Large Data
Spatial Analysis
Web Scrapping
Faster R
R Packages
R Work Flow

Next

  • Login

    • Lost Password
  • Today in Energy

  • Archives

  • R-Bloggers

    Time Series Forecasting with XGBoost and Feature Importance
    Time Series Forecasting with XGBoost and Feature Importance
    ppsr live on CRAN!
    ppsr live on CRAN!
    Thinks Another: Using Spectrograms to Identify Stage Wiggliness?
    Thinks Another: Using Spectrograms to Identify Stage Wiggliness?
    Super-FAST EDA in R with DataExplorer
    Super-FAST EDA in R with DataExplorer
    Summer Internships 2021
    Summer Internships 2021
Applied R Code
Proudly powered by WordPress.